Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 12(1): 6905, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824279

RESUMO

Although 90% of children with acute lymphoblastic leukemia (ALL) are now cured, the prognosis for infant-ALL remains dismal. Infant-ALL is usually caused by a single genetic hit that arises in utero: an MLL/KMT2A gene rearrangement (MLL-r). This is sufficient to induce a uniquely aggressive and treatment-refractory leukemia compared to older children. The reasons for disparate outcomes in patients of different ages with identical driver mutations are unknown. Using the most common MLL-r in infant-ALL, MLL-AF4, as a disease model, we show that fetal-specific gene expression programs are maintained in MLL-AF4 infant-ALL but not in MLL-AF4 childhood-ALL. We use CRISPR-Cas9 gene editing of primary human fetal liver hematopoietic cells to produce a t(4;11)/MLL-AF4 translocation, which replicates the clinical features of infant-ALL and drives infant-ALL-specific and fetal-specific gene expression programs. These data support the hypothesis that fetal-specific gene expression programs cooperate with MLL-AF4 to initiate and maintain the distinct biology of infant-ALL.


Assuntos
Feto , Regulação Neoplásica da Expressão Gênica , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA , Feminino , Edição de Genes , Histona-Lisina N-Metiltransferase , Humanos , Fígado , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Elongação da Transcrição
3.
Lancet Child Adolesc Health ; 4(2): 121-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786093

RESUMO

BACKGROUND: Marked variation exists in the use of genomic data in tumour diagnosis, and optimal integration with conventional diagnostic technology remains uncertain despite several studies reporting improved diagnostic accuracy, selection for targeted treatments, and stratification for trials. Our aim was to assess the added value of molecular profiling in routine clinical practice and the impact on conventional and experimental treatments. METHODS: This population-based study assessed the diagnostic and clinical use of DNA methylation-based profiling in childhood CNS tumours using two large national cohorts in the UK. In the diagnostic cohort-which included routinely diagnosed CNS tumours between Sept 1, 2016, and Sept 1, 2018-we assessed how the methylation profile altered or refined diagnosis in routine clinical practice and estimated how this would affect standard patient management. For the archival cohort of diagnostically difficult cases, we established how many cases could be solved using modern standard pathology, how many could only be solved using the methylation profile, and how many remained unsolvable. FINDINGS: Of 484 patients younger than 20 years with CNS tumours, 306 had DNA methylation arrays requested by the neuropathologist and were included in the diagnostic cohort. Molecular profiling added a unique contribution to clinical diagnosis in 107 (35%; 95% CI 30-40) of 306 cases in routine diagnostic practice-providing additional molecular subtyping data in 99 cases, amended the final diagnosis in five cases, and making potentially significant predictions in three cases. We estimated that it could change conventional management in 11 (4%; 95% CI 2-6) of 306 patients. Among 195 historically difficult-to-diagnose tumours in the archival cohort, 99 (51%) could be diagnosed using standard methods, with the addition of methylation profiling solving a further 34 (17%) cases. The remaining 62 (32%) cases were unresolved despite specialist pathology and methylation profiling. INTERPRETATION: Together, these data provide estimates of the impact that could be expected from routine implementation of genomic profiling into clinical practice, and indicate limitations where additional techniques will be required. We conclude that DNA methylation arrays are a useful diagnostic adjunct for childhood CNS tumours. FUNDING: The Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children's Charity, Olivia Hodson Cancer Fund, Cancer Research UK, and the National Institute of Health Research.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Metilação de DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Terapia de Alvo Molecular , Biomarcadores Tumorais/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Criança , Humanos , Estudos Retrospectivos , Telomerase
4.
Br J Haematol ; 171(2): 263-272, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26115422

RESUMO

Here, we report a high incidence of PAX5 abnormalities observed in 32/68 (47%) of patients with genetically unclassified childhood precursor B-cell acute lymphoblastic leukaemia (pre-B ALL). Various deletions, gains, mutations and rearrangements of PAX5 comprised 45%, 12%, 29% and 14%, respectively, of the abnormalities found. 28% of patients showed more than one abnormality of the gene, implying bi-allelic impairment of PAX5. Novel PAX5-RHOXF2, PAX5-ELK3 and PAX5-CBFA2T2 rearrangements, which lead to aberrant expression of PAX5, were also identified. PAX5 rearrangements demonstrated a complex mechanism of formation including concurrent duplications/deletions of PAX5 and its partner genes. Finally, the splice variant c.1013-2A>G, seen in two patients with loss of one PAX5 allele, was confirmed to be germ-line in one patient and somatic in the other. PAX5 alterations were also found to be clinically associated with a higher white blood cell count (P = 0·015). These findings contribute to the knowledge of PAX5 alterations and their role in the pathogenesis of pre-B ALL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...